If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-14=45
We move all terms to the left:
2x^2-14-(45)=0
We add all the numbers together, and all the variables
2x^2-59=0
a = 2; b = 0; c = -59;
Δ = b2-4ac
Δ = 02-4·2·(-59)
Δ = 472
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{472}=\sqrt{4*118}=\sqrt{4}*\sqrt{118}=2\sqrt{118}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{118}}{2*2}=\frac{0-2\sqrt{118}}{4} =-\frac{2\sqrt{118}}{4} =-\frac{\sqrt{118}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{118}}{2*2}=\frac{0+2\sqrt{118}}{4} =\frac{2\sqrt{118}}{4} =\frac{\sqrt{118}}{2} $
| 8u=18-u | | x—2=0 | | x^2+10=38 | | -6x+3=15x-2 | | 3(y-2)=16 | | 3g−2=7 | | 9x-1=136 | | 4^n+2+2=20 | | 4x+24=9x+39 | | 10−3p=1 | | 3x-18=3x(x-18) | | 5x+10/2=x+5/4 | | 36r2=81 | | -0.3x+0.8x-1=-4 | | -z^2-3z=0 | | 15−2s=3 | | 2(r−58)=48 | | 9j+26=89 | | 4s−8=8 | | 5+3r=17 | | 2b−17=1 | | 2(6x-24)=5+2x+7 | | 9+2y=19 | | 10a2-9=81 | | 5(4x+8)=-24+4 | | 16x-4=7x+5 | | 9u=7u−6 | | 6c^2-24c=0 | | m4− 2=1 | | 6+7w=5w | | 1 = m4− 2 | | 4+7x-12)=-38 |